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Abstract. State explosion is a fundamental problem in the analysis
and synthesis of discrete event systems. Continuous Petri nets can be
seen as a relaxation of discrete models allowing more efficient (in some
cases polynomial time) analysis and synthesis algorithms. Nevertheless
computational costs can be reduced at the expense of the analyzability
of some properties. Even more, some net systems do not allow any kind
of continuization. The present work first considers these aspects and
some of the alternative formalisms usable for continuous relaxations of
discrete systems. Particular emphasis is done later on the presentation
of some results concerning performance evaluation, parametric design
and marking (i.e., state) observation and control. Even if a significant
amount of results are available today for continuous net systems, many
essential issues are still not solved. A list of some of these are given in
the introduction as an invitation to work on them.

1 Introduction

It is well-known that Discrete Event Dynamic Systems (DEDS), and in particu-
lar Petri Nets (PN), suffer the state explosion problem, what is particularly true
when the system is “highly populated” (i.e., the initial marking is large). One
way to tackle that problem is to use some kind of relaxation. Fluidification (or
continuization) is a classical relaxation technique that tries to deal with the state
explosion by removing the integrality constraints. The idea is analogous to that
allowing the transformation of an Integer Linear Programming problem (ILP,
NP-hard) into a Linear Programming problem (LP, polynomial time complex-
ity). The systematic use of linear programming in the fundamental or “state”
equation for the analysis of Petri Nets was proposed in 1987 (see [1] for a revised
version of the seminal work, and [2] for a more recent survey).

In Queuing Networks (QN) approximating the clients flow with a continuous
fluid flow is a classical relaxation (see, for example, [3–6]). For PN, a similar
relaxation was introduced and developed by R. David and co-authors, starting
? This work was partially supported by project CICYT and FEDER DPI2003-06376.



in 1987 [7] (see [8] for a very recent perspective). These models were called
continuous Petri Nets.

Fluidified models have advantages in the sense that they allow to obtain
better analytical characterizations, or computationally more efficient algorithms.
However, being an approximation, there are properties that cannot be analyzed
(mutex for example), and often only partial results can be obtained with respect
to their validity in the original system [9].

Even if the idea of continuization of Petri nets is well inscribed in the frame-
work of classical relaxations, even if several interesting analysis and synthesis
results have been obtained in the last years [8–11], the field is still very young
and essential contributions are needed. Let us just start this overview —we recog-
nize partially biased from and towards our works— saying that many essential
questions do not have a satisfactory answer, in several cases because the problem
has not been addressed yet. Just quoting a few:

1. Is a given net system fluidizable? Some net models are not “approximated” at
all by its fluidization, just as many differential equation systems (as chaotic
models) do not admit a reasonable linearization.

2. How to define the firing policies of transitions when submerging nets systems
in time (i.e., how to define the routing decisions and service rates at conflicts
and at stations, respectively)? Today two servers semantics (finite or con-
stant speed, and infinite or variable speed) are mostly used in a deterministic
setting, but many others can be defined.

3. Provided that several firing (service and routing) semantics can be defined,
which one is the best —or a good one— for a given particular case?

4. Given a timing semantics: When does a steady state exist? (The apparent
mismatch being that the underlying markovian model may be ergodic, while
the continuous case is oscillatory.)

5. Marking reachability in untimed net systems has today a quite reasonable
characterization in algebraic terms. For timed models, even for steady state
markings, only necessary conditions are well known in general. Of course,
for particular classes of net systems (for example, live and bounded equal
conflicts), more powerful results are available. The issue is: How to improve
the characterization of which steady states can be reached from a given initial
marking (and, eventually, which is a “good” control policy)?

6. Even if for off-line design problems some interesting results are already
known, observation and, essentially, control of continuous net models require
still important improvements. Lose of observability or stability requires still
much work.

7. Assuming that “good” off-line designs or dynamic controls are obtained for
the continuous relaxation, how to come back to a “reasonable” design or
control (scheduling) in the original discrete setting? For this problem, some
post-optimization strategies (eventually using metaheuristics like simulated
annealing or taboo search [12] can be used, but the problem is essentially
unexplored).



Therefore in this work no concluding remarks will be given, leaving the pre-
sentation relatively open. The reader is recommended to have the above open
questions and many others in mind while going trough the following material.
Even if the warning to existing “holes” in our basic understanding (the theory)
is put here in the introduction, some hopefully interesting results are available.
They provide some behavioral characterizations, sometimes in polynomial time.

The structure of the paper is as follows: In Sect. 2 both autonomous and
timed continuous PN are introduced. Sect. 3 briefly compares PN with other
formalisms in which similar relaxations are used (queuing networks, Forrester
diagrams and positive systems). Performance evaluation of continuous timed PN
is addressed in Sect. 4. The results that are obtained are applied in Sect. 5 to
some synthesis problems. Sect. 6 is devoted to the study of observability. Finally,
the dynamic control of continuous timed models is considered in Section 7.

2 Continuous Petri Nets: on the Relaxation of DEDS
Models

2.1 Autonomous Continuous Petri Nets

We assume that the reader is familiar with PN (for notation we use the standard
one, see for instance [13]).

The usual PN system, 〈N ,m0〉, will be said to be discrete so as to distinguish
it from a continuous PN. The structure N = 〈P, T,Pre,Post〉 of continuous
Petri nets is the same as in discrete PN, the difference is in the evolution rule.
In continuous PN firing is not restricted to be done in integer amounts. As a
consequence the marking is not forced to be integer. More precisely, a transition
t is enabled at m iff for every p ∈ •t, m[p] > 0, and its enabling degree is
enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount α ≤
enab(t,m) leads to a new marking m′ = m + α ·C[P, t].

The set of reachable markings in continuous PN verifies some properties that
do not hold in the discrete case. For example, the set of reachable markings of
a continuous system is a convex set [14].

In continuous Petri nets the firing can be done in so small quantities that
a net can be “almost” in a deadlock state but never reach it. In our opinion,
these limit markings should also be considered as reachable. Otherwise, there
are nets, as the one in Fig. 1(a), that will deadlock as discrete for any initial
marking, but can never be completely blocked as continuous. In [14] the limit
reachability concept was introduced. The set of these limit-reachable markings
will be denoted as RSC(N ,m0). The set of solutions of the relaxed fundamental
equation will be denoted as LRSC(N ,m0), that is, LRSC(N ,m0) = {m | m =
m0 + C · σ ≥ 0, σ ≥ 0}. As in discrete PN, the fundamental equation re-
laxation may add spurious solutions to the relaxation made at the net level,
that is, RSC(N ,m0) ⊆ LRSC(N ,m0). However, and contrary to what hap-
pens in the discrete case, in most practical cases these sets are equal. More
precisely, if N is consistent (i.e., ∃x > 0 : C · x = 0) and every transition can
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Fig. 1. (a) If limit markings are not considered, liveness of a continuous net is not suf-
ficient for (structural) liveness of its discrete counterpart. (b) In any case, (structural)
liveness of the continuous net is not necessary for (structural) liveness of its discrete
counterpart.

be fired, ∃σ > 0,m0
σ−→ (or, equivalently, ∃m > 0,m ∈ RSC(N ,m0)), then:

RSC(N ,m0) = LRSC(N ,m0) [14]. Since the preconditions are very weak, this
means that in practice the relaxation at net level is “equivalent” to the relax-
ation at the fundamental equation level. That is, there do not exist spurious
solutions of the fundamental equation.

Hence, properties like deadlock-freeness can be analytically studied. More-
over, structural traps (Θ ⊆ P such that Θ• ⊆ •Θ) do not necessarily “trap”
tokens in continuous PN. That is, the behavioural counterpart of structural
traps is not true anymore: in continuous PN, traps may be emptied. Moreover,
if every transition of the net system can be fired, then every T-semiflow can
be fired in isolation [14]. This has an important consequence: behavioural and
structural synchronic relations [15] coincide.

Fluidification means simplifying the model, assuming that this will allow to
use computationally less expensive techniques and get more information about
the system. However, one has to keep on mind that those results refer to the
continuous PN, and do not always provide “useful” information about the un-
derlying discrete model. Since continuous PN are a relaxation of discrete PN,
for those properties based on universal (existential) quantifiers the continuous
PN will provide sufficient (necessary) conditions. For example, if the continuous
PN is bounded, so will be the discrete PN. For a marking to be reachable in the
discrete model, reachability in the continuous one must be guaranteed. However,
for those properties formulated interleaving universal and existential quantifiers
the analysis of the continuous PN may not provide information about the behav-
iour of its discrete counterpart. For example, liveness (deadlock-freeness) of the
continuous PN is neither necessary nor sufficient for liveness (deadlock-freeness)
of the discrete PN. Nevertheless, to be fair one should take into account that
maybe the only problem of the discrete net is that it does not have enough to-
kens. In fact, it can be proved that any (lim-)live continuous PN is structurally
live as a discrete PN, although not necessarily live, i.e., the structure of the net is
“correct”, although the marking may be “not large enough” [14]. On the other
hand, a live discrete net may be so only with a particular marking, and any



increase of the marking makes it non-live (see Fig. 1(b)). That kind of nets will
never go well with continuization, since continuization can be interpreted as if
the marking were multiplied by a very large number (infinite populations).

Continuization leads to “easier to analyze” models compared to the discrete
models. Nevertheless, the price that has been payed for the relaxation is that
some properties of discrete PN cannot be observed in continuous systems, for
example mutex relationship, since this property is based on the notion of dis-
junctive resources, which is lost in the continuous models. Also the distinction
between reversibility and existence of home states is lost. This clearly extends
to some monopoly and fairness situations.

2.2 Timed Continuous Petri Nets

A simple and interesting way to introduce time in discrete PN is to assume that
all the transitions are timed with exponential probability distribution function
(pdf). This way, a purely markovian performance model is obtained, for which,
due to the memoryless property, the state of the underlying Markov chain is the
very marking of the autonomous PN [16].

For the timing interpretation of continuous PN we will use a first order (or
deterministic) approximation of the discrete case [17], assuming that the delays
associated to the firing of transitions can be approximated by their mean values.
Notice that for “congested” systems, this approximation is valid for any pdf —
applying the central limit theorem. Here, for simplicity, immediate transitions
will only be used for “free” conflicts that will be solved according to (marking
and time independent) routing rates R.

Different semantics have been defined for continuous timed transitions, the
two most important being infinite server (or variable speed) and finite server
(or constant speed) [18, 17]. Under finite server semantics, the flow of ti has
just an upper bound, λ[ti] (the number of servers times the speed of a server).
Then f(τ)[ti] ≤ λ[ti] (knowing that at least one transition will be in saturation,
that is, its utilization will be equal to 1). Under infinite server semantics, the
flow through a timed transition t is the product of the speed, λ[t], and the
instantaneous enabling of the transition, i.e., f [t] = λ[t] · enab(t,m) = λ[t] ·
minp∈•t{m[p]/Pre[p, t]}. In both cases piecewise linear differential systems are
obtained.

For discrete PN infinite server semantics is more general, since it allows to
implement finite server semantics by adding a place marked with as many to-
kens as the number of servers. However, this does not represent finite-servers
semantics if these tokens are interpreted as fluids. In the continuous case the
two evolution rules are related to different relaxations of the model. A transi-
tion is like an station in QN, thus “the meeting point” of clients and servers.
Assuming that there may be many or few of each one of them, fluidization can
be considered for clients, for servers or for both. Table 1 represents the four the-
oretically possible cases. Finite server semantics corresponds at conceptual level
to a hybrid behaviour: fluidization is applied only to clients, while servers are
kept as discrete, counted as a finite number (the firing speed is bounded by the
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Fig. 2. A simplification of a production line in [20]

product of the speed of a server and the number of servers in the station). On
the other hand, infinite server semantics really relaxes both clients and servers.

Table 1. The four cases for possible continuization of a transition [11]. The third one
corresponds to delays in QN.

Clients Servers Semantics of the transition

few (D) few (D) Discrete transition
many (C) few (D) Finite server semantics (bounds to firing speed)
few (D) many (C) Discrete transition (servers become implicit places)
many (C) many (C) Infinite server semantics (speed is enabling-driven)

In both cases, although the fluidization is total, models are hybrid in the
sense that they are piecewise linear systems, in which switching among the em-
bedded linear systems is not externally driven as in [19], but internally through
the minimum operators. If the PN belongs to the join-free subclass (i.e., transi-
tions cannot have more than one input place), its fluidization generates a linear
differential equation system.

The simple (asymmetric choice) model in Fig. 2 represents a production sys-
tem with two production lines (it is part of an example studied in [20]). It has
been analyzed using infinite server semantics and finite server semantics (single-
server). In both cases, as the marking of the net is multiplied by a constant k,
the throughput (normalized in the infinite server case) approaches to the one ob-
tained when the net is seen as continuous (Table 2). In this case, the continuous
net under infinite server semantics is a better approximation of the behaviour of
the original discrete system. The finite server semantics disregards the restric-
tions due to the shared resources, that in this example are quite important unless
the system is heavily loaded (large k). Since the two semantics are not com-
parable, an immediate question is: Do they provide really different performance
measures? The answer is positive, being possible to have large differences in the
throughput (finite server semantics being usually more optimistic). Therefore,
for a particular case, which continuous semantics is better? How much error can
we have? For these questions we have no definitive answer, and it is not clear



Table 2. Steady state throughput of the system in Fig. 2, assuming each operation
takes 1 t.u. (For k=10 and k=50, markovian simulations are used.)

Reachable Infinite servers Single server
k markings Thr. of every ti Thr./k Thr. of every ti

1 250 0.172 0.172 0.172
2 6300 0.366 0.183 0.303
3 67375 0.564 0.188 0.399
5 2159136 0.966 0.193 0.528
10 ? 1.96 0.196 0.693
50 ? 9.97 0.199 0.91
· · · · · · · · · · · · · · ·

Continuous 0.2 1

if some in depth understanding can be obtained; nevertheless, an experimental
analysis of benchmark examples from the literature is being considered [20]. As a
preliminary remark, it seems that in most cases infinite server semantics provides
a better approximation, although it seems difficult to obtain a characterization
of the cases in which this happens. Moreover, other models —particularly use-
ful for population dynamic problems— obtained through decoloration of colored
models lead to a different semantics in which the “min” operator is replaced by
a product [9] (which naturally keeps positive the decolored model).

3 Alternative Formalisms

The approximation of a discrete event model by a continuous one is not new,
and can be found in different formalisms.

Deterministic first-order approximations have been long used in QN [21, 3,
22, 4]. The fluid QN arises as a limit, in the sense of functional strong law of large
numbers, of the stochastic network with the appropriate scaling. In [23] it was
proven that the fluid models of certain QN could be used to analyze the (positive)
recurrence of their discrete counterparts. In the last years, this has been extended
to open or closed multiclass networks under different policies. Fluid models have
also been applied in the synthesis of controls or scheduling (see, for example, [5,
6, 24–26]), proving that the optimal policy of the fluid networks can be somehow
translated to a “good” policy for some discrete QN. In this setting, the emphasis
has been usually put on the rigorous mathematical justification, even if that
meant that fluid models were applied to “narrow” net classes.

Comparisons of PN and (monoclass) QN can be seen in [27–29]. Both for-
malisms are in essence bipartite: Places and transitions for PN; Queues and
stations for QN. From an structural point of view, the main differences are the
possible simultaneous existence in a single PN model of arc weights, attribu-
tions, choices, forks and joins, and the possible absence of local conservation
rules when transitions are fired. QN are in essence timed models, that may be
provided with very rich routing service and queuing disciplines, while PN can



be studied also as autonomous (idea of non-determinism). Moreover, as it was
be pointed out in Subsect. 2.2, different timed interpretations of the net lead
to different firing/flow policies. The firing logic of PN is of the type consump-
tion/production, a kind of generalization of the classical client/servers in QN
(Jackson, Gordon-Newell).

Forrester Diagrams (FD) appeared in the Systems Dynamics framework, and
is a well-known, essentially continuous timed formalism for modelling certain
classes of DES [30, 31]. FD provide a graphic representation of the system, that
corresponds to an hydrodynamic interpretation. A comparison of PN and FD
can be found in [32, 33]. For example, Fig. 3 represents both a FD and a PN
model of an example. It is a production system that maintains a certain stock
(St, with initial value 9) and a number of employees (E, with initial value 12).
Products decrease due to sales, which are constant in time (S=12), and increases
with production (P), which is proportional to the number of employees (here with
constant 1). Employees change due to hiring or firing (HF), which is proportional
to the difference between the desired stock (DSt=10) and the actual stock (St).
Two remarks with respect to the PN model of the system: (1) variables have to
be positive, hence variable HF has been split in two, hiring and firing; (2) to rep-
resent that sales are constant, or that firing depends on the stock, self-loops have
been added with large enough arc weights to guarantee that these places always
define the enabling degree (here weight 1 is enough). Although the continuous
net is not structurally bounded, it is bounded with this timing. That is, com-
plementary places (St, E) with a large enough marking could be added without
changing the behaviour. Continuous PN and FD provide a graphical support to
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Fig. 3. A system described using FD and PN [33]. In the Forrester diagram, St and E
are deposits with levels, while P, S and HF are valves regulating the flows.

generate systems of differential equations easily and there is a clear correspon-
dence among their main types of nodes — place/level and transition/valve (or
firing-speed/flow-variable). However, there are some differences [32, 33]:



– Marking of places vs levels. In FD each level corresponds to a state variable.
Although in PN places are essentially state variables, redundancies may ex-
ist due to token conservation laws. Particular cases are structural implicit
places. Levels may be negative, but markings are in essence positive.

– Transitions vs. valves: flows. The evolution of flows in FD takes place ac-
cording to the information that valves receive from the whole state of the
system, through the information channels. The evolution of the PN takes
place according to the information that each transition receives from its in-
put places. Thus, FD separate the material and the information flows, and
evolve according to global information of the system. On the other hand,
PN have only a flow of material that carries the information implicitly, and
evolve according to information that, in standard uses, is local to each tran-
sition (its input places).

– In FD synchronizations are not explicitly modelled: there exist no elements to
represent “rendez-vous”, and must be simulated by means of flow equations.

– In FD material is strictly conservative around the valves (the relationship
among input and output flow is always 1:1), while in PN weighted conser-
vation is often found.

As QN, FD are timed models. In FD the methodological analysis is basically
focused to simulation, although there are some researching groups who also did
go into the mathematical analysis of the system, basically sensibility, bifurca-
tions and qualitative analysis (see for example [34]). Contrarily to QN, in FD
the relationship between the solution of the continuous model and the original
discrete model has not received much attention.

Under both, finite and infinite server semantics, “unforced” PN models are
positive systems in Luenberger sense [35, 36], that is, the non-negativity con-
straints on the marking are redundant. A particularly interesting case of posi-
tive systems are compartmental systems, which are composed of a finite number
of subsystems (compartments), interacting by exchanging material among the
compartments and with the environment [37–39].

An immediate similarity between PN and compartmental systems is that
both allow representations based on graphs. However, PN are bipartite graphs,
while compartmental models have a single kind of nodes. In discrete PN there are
two different kinds of nodes: OR nodes (attributions/choices), and AND nodes
(joins/forks). Nevertheless, in continuous PN (under infinite server semantics)
the forward OR node in homothetic conflicts (if between t1 and t2, Pre[P, t1] =
α · Pre[P, t2]) is transformed into a “+” operation. Therefore, choices can be
seen as flow splitters.

As in FD, in compartmental systems there is a strong “strict” conservation
law: matter is not created, although it may “evaporate” and disappear if the
system is not (output) closed. In PN such kind of constraint does not exist.

Another difference between PN and the graphs associated to compartmental
systems is the arc weights. However, this is not a real generalization in the case of
continuous nets without synchronizations (join-free nets), since for any of those
nets, an equivalent one exists with arc weights one [36]. In other words, weights in



continuous models without synchronizations constitute a modelling convenience
(i.e., do not add theoretical expressive power).

Putting all together, strongly connected and conservative PN without syn-
chronizations are equivalent, from the modelling point of view, to closed linear
compartmental systems [36].

The above consideration of alternative “fluidified” formalisms is a source
of opportunities in order to bridge the results in the analysis or synthesis of
continuous PN models with that in “close” or related paradigms.

4 Performance Evaluation

Analyzing the performance of a continuous PN both in the transient and in the
steady state involves integrating a set of differential equations. In theory it is
possible to solve it analytically: solve the linear differential equations defined by
the initial marking, and study among the different “minimums” associated to the
synchronizations which one will be reached before, then repeat the process. In
practice the existence of many differential equations, and many synchronizations
makes this “artisanal” approach unfeasible, although a numerical version can be
easily implemented in a computer, for example using Matlab. The equations that
define the behaviour of the system in Fig. 4(a) are:

f(τ)[t1] = λ[t1] ·m(τ)[p1]
f(τ)[t2] = λ[t2] ·m(τ)[p2]
f(τ)[t3] = λ[t3] ·min(m(τ)[p2],m(τ)[p3])
f(τ)[t4] = λ[t4] ·min(m(τ)[p3],m(τ)[p4])

If it is only the steady state we care about, some results and techniques have
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been developed (see [10]). First of all, it has to be remarked that, in general,
there is no guarantee about the existence of a steady state. For example, the
net in Fig. 3(b) oscillates indefinitely without, even asymptotically, approaching
to a steady state [33](see Fig. 5). To the best of our knowledge, the existence
of a steady state had always be assumed, even for hybrid nets. In the future
some work will be needed for the development of at least necessary or sufficient
conditions. In the rest of this section some results for the computation of the
steady state will be given, being assumed the existence of a steady state marking
under infinite server semantics. Nevertheless, it should be pointed out that the
markovian discrete counterpart of this model is ergodic. Let mss be the steady

0 5 10 15 20 25 30
8

10

12

14

(t.u.)

M
ar

ki
ng

 E
vo

lu
tio

n

m[St]
m[E]

Fig. 5. The net system in Fig. 3(b) does not have a steady state.

state marking of a bounded continuous net system: mss = limτ→∞m(τ). Then,
for every τ > 0 it must be true:

ṁ(τ) = C · f(τ)

f [t](τ) = λ[t] ·min
p∈•t

{
m[p](τ)
Pre[p, t]

}
∀ non-immediate transition t

R · f(τ) = 0

m(0) = m0

(1)

Using φ as an approximation of f in the steady state, and µ as an approxi-
mation of the marking in the steady state, the above equations can be relaxed
as follows:

µ = m0 + C · σ

φ[t] = λ[t] ·min
p∈•t

{
µ[p]

Pre[p, t]

}
∀ non-immediate transition t

R · φ = 0

C · φ = 0

µ,σ, φ ≥ 0}

(2)



With this relaxation we have replaced the condition of being a reachable
marking with that of being a solution of the fundamental equation. That is, we
are loosing the information about the feasibility of the transient path. Observe
that the system is non-linear (“min” operator) and a unique solution is not
guaranteed. For example, for the net system in Fig. 6 with λ = [2, 1, 1], any
marking [10 − 5 · α, 4 · α − 3, α, α], with 1 ≤ α ≤ 5/3, verifies (2), and all of
them lead to different throughput. Maximizing the flow of a transition, an upper
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Fig. 6. A net system for which, with λ = [2, 1, 1], infinite solutions of (2) exist.

bound of the throughput is obtained:

max{φ[t1] | µ = m0 + C · σ

φ[t] = λ[t] ·min
p∈•t

{
µ[p]

Pre[p, t]

}
∀ non-immediate transition t

R · φ = 0

C · φ = 0,

µ, σ,φ ≥ 0}

(3)

Notice that the solution of (3) is always dynamically “reachable” in the sense
that with a suitable initial distribution of the tokens inside the P-semiflows, this
throughput can be obtained (for instance, with the steady state distribution).
Nevertheless, the programming problem in (3) is not easy to solve due to the
“min” operator, that makes it non linear. The problem is that there is no way to
know in advance which of the input places will restrict the flow, and so, a kind
of branch and bound algorithm is used to solve it [10]. The idea is to solve the
LPP defined by the system of (in)-equalities that appears choosing one input
place per transition as the one which gives the minimum. If the marking does
not correspond to a steady state (i.e., there is at least one transition such that all
its input places have “too many” tokens) choose one of the synchronizations and
solve the set of LPP that appear when each one of the input places are assumed
to be defining the flow. That is, build a set of LPP by adding an equation
that relates the marking of each input place with the flow of the transition.



These subproblems become children of the root search node. The algorithm is
applied recursively, generating a tree of subproblems. If an optimal steady state
marking is found to a subproblem, it is a possible steady state marking, but not
necessarily globally optimal. Since it is feasible, it can be used to prune the rest
of the tree: if the solution of the LPP for a node is smaller than the best known
feasible solution, no globally optimal solution can exist in the subspace of the
feasible region represented by the node. Therefore, the node can be removed from
consideration. The search proceeds until all nodes have been solved or pruned.
Some results have been developed that help to further prune the tree [10], but
nevertheless, worst cases may be computationally expensive.

This suggests to go on with an additional relaxation, knowing that some
accuracy may be lost. Since the minimum is the hardest point, that equation
in (3) can be replaced with:

φss[t] = λ[t] · µss[p]
Pre[p, t]

if p = •t (4)

φss[t] ≤ λ[t] · µss[p]
Pre[p, t]

∀p ∈ •t otherwise (5)

φss[ti]
λ[ti]

=
φss[tj ]
λ[tj ]

∀ ti, tj in EQ relation (6)

This way we have a single linear programming problem (LPP), thus com-
putation is of polynomial time complexity. Unfortunately, the LPP provides in
general a non tight bound, i.e, the solution may be non reachable for any dis-
tribution of the tokens verifying the P-semiflow load conditions, y · m0. This
may occur because it may be the case that for that solution none of the input
places of a synchronization really restricts the flow of that transition. When this
happens, the marking cannot define the steady state (the flow of that transition
would be larger). See [10] for conditions that guarantee in some systems the
reachability of the bound.

A slight relaxation of that LPP, using inequalities in all the transitions, leads
to a result that had been obtained long before for discrete nets. For bounded
discrete net systems, an upper bound of the throughput of one transition can
be obtained by means of that LPP [40, 41].

max{φ[ti] | µ = m0 + C · σ

φ[t] ≤ λ[t] · µ[p]
Pre[p, t]

∀p ∈ •t

R · φ = 0

C · φ = 0,

µ,σ, φ ≥ 0}

(7)

For nets in which the steady state visit ratio can be deduced from the struc-
ture and the rates of the transitions (mono T-semiflow reducible nets), it can



be proved that both statements are equivalent (in the sense that if one solu-
tion with inequality exists, another one with the same throughput verifies the
equality) [10].

5 Parametric Design

In engineering, analysis techniques frequently guide in the definition of synthesis
methods. Assuming approximate computation of performance with efficient al-
gorithms, the problem of designing the best set of resources (best m0), the best
routing policy (best R), the best type of machines (machine selection problem,
appearing indirectly as determining the best λ) can be straightforwardly stated.
Observe that these are not “on-line” control problems, but “off-line” design prob-
lems in which parametric optimizations are being solved. A recent presentation
of some “easily” (i.e., polynomial time) solvable problems of this type can be
found in [11]. One of the basic statements is as follows: Let g·f−w·m−b·m0, be
the profit function to be optimized, where, g represents a gain vector associated
to flows/throughput, w is the cost vector due to immobilization to maintain
the production flow (e.g., due to the levels in stores), and vector b represent
depreciations or amortization of the initial investments (e.g., due to the size of
the stores, number of machines, . . . ). Assume also upper bounds in the use of
the resources (V ·m0 ≤ k), i.e., its availability is limited.

This kind of optimization problem admits a particularly elegant and efficient
solution if the LPP, stated in Sect. 4 lead to the exact value (otherwise upper
bounds are obtained). As was previously mentioned, this happens, for example,
for structurally live and bounded equal conflict (EQ) nets (its characterization
can be computed polynomially through the rank theorem [9]). For simplicity,
in the sequel of this section let us assume that nets are structurally live and
bounded EQ (thus mono-T-semiflow reducible), and conflicts among immediate
transitions are solved according to routing rates, R. The following LPP can be
written:

max{ g · φ−w · µ− b · µ0

s.t. µ = µ0 + C · σ
φ[t] ≤ λ[t] · µ[p]

Pre[p,t] ∀p ∈ •t

φ[t] = λ[t] · µ[p]
Pre[p,t] if p = •t

C · φ = 0
R · φ = 0
φ, µ,µ0 ≥ 0
V · µ0 ≤ k}

(8)

In other cases the problem to be solved is which are the minimum cost re-
sources (b ·m0) that guarantee a certain throughput (see Problem 5 in [11]).
The routing matrix R may be also the parameters to be optimized, looking for
best production mix, or better internal routing at the factory. A simple case
for optimizing a profit function w.r.t. the routing R is the following example:



Maximize g ·φ−w ·µ− b ·µ0, with respect to the routing. The following LPP
computes an optimal flow vector, φ, being R free.

max{ g · φ−w · µ− b · µ0

s.t. µ = µ0 + C · σ
φ[t] ≤ λ[t] · µ[p]

Pre[p,t] ∀p ∈ •t

φ[t] = λ[t] · µ[p]
Pre[p,t] if p = •t

C · φ = 0
µ ≥ 0}

(9)

Once LPP (9) has been solved, the computation of the routing matrix R, is
straightforward, just proceed free-choice by free-choice. Assuming for simplicity
that choices are binary: φ1/φ2 = r1/r2, and r1 + r2 = 1.

If all free conflicts are solved with immediate transitions, and g = 1,w =
b = 0, this LPP is analogous to the one stated in [42], assuming boundedness.
Even if in this last case nets are P-timed (i.e., with delays associated to places),
and conflicts are solved according to a stationary routing policy (a simplifying
preselection policy, which in practice is equivalent a net without conflicts), and
have different transient behaviour, their steady state is the same.

6 Observation

In order to control a dynamic system, frequently it is necessary to know its
current state. Sensors can be used to get information from the plant, but often
some of the variables cannot be directly measured, either because it is not phys-
ically possible, or because of its cost. If the information that can be obtained
from the system allows to estimate the value of a variable, that variable is said
to be observable (with that instrumentation), and the estimate constitutes the
observation. The observability problem, i.e., the characterization of which state
variables are observable and its observation, has been studied both for continu-
ous systems (in particular linear systems) and for discrete event systems. Some
results related to observability of discrete event models can be found in [43, 44].

With respect to continuous systems, observability is quite a classical problem,
for which easy to understand and general results were obtained for time-invariant
linear systems in the sixties of the last century [45, 35]. The contribution of inputs
to the evolution of a linear system can be easily computed and subtracted from
the total output. Therefore, observability of linear systems can be studied using
its unforced counterpart.

A time-invariant linear system can be expressed as ẋ(τ) = A · x(τ) + B ·
u(τ),y(τ) = S · x(τ), where y represents its output, that is, “what is seen” of
it. A linear system is said to be observable iff knowing y(τ), it is possible to
compute its initial state x(τ0). That is, iff knowing y(τ) the equation

y(τ) = S · eA·τ · x(τ0)

can be solved for every x(τ0). It can be seen that this is equivalent to matrix
ϑ = (ST |(SA)T | · · · |(SAn−1)T )T having full rank. This result is known as the



observability theorem and the matrix is known as the observability matrix [45].
For linear systems, the observable subspace can be characterized algebraically.
Intuitively, a system state estimation can be theoretically obtained from the
output signal and the computation of its derivatives.

Hence observability is completely characterized for nets that can be described
with a linear system, that is, join-free nets (i.e., nets that do not have synchro-
nizations). If the net has synchronizations, there are several linear systems that
may define the evolution of the system, depending on which is the place that
restricts each transition. The observability theorem has been extended to gen-
eral piecewise linear systems. The complete system is observable iff the pairwise
intersection of different observable subspaces is trivial, that is, the joint observ-
ability matrix of each pair of linear system has full rank [46]. However, continuous
PN have a characteristic that these general piecewise systems do not have: the
change of one linear system to another one is triggered by the continuous state
(the marking). This makes the observability of continuous PN a more simple
issue [47]: if the system passes through an observable linear system, its marking
at that moment can be observed. And since it is deterministic, it is possible to
simulate it backwards and deduce the initial marking.

Notice also that observability of a synchronization will not be possible in
general unless all its input places are measured (it might be possible to mea-
sure one place only if it were timed implicit). Moreover, observability cannot be
extended forward (the output flow of a transition does not provide information
to deduce the marking of the next place). Hence, the problem can be tackled
by measuring the places in synchronizations. The net that remains removing
those places and their input and output arcs—eventually composed of several
unconnected subnets—is join-free. For these subnets, the observability theorem
can be applied. Hence, given a set of measured places it is not difficult to prove
whether the net is observable or not.

Nets without synchronizations and attributions (p ∈ P is an attribution if
|•p| > 1) can be observed just measuring the “final” places (places without
output arcs) or measuring one (any) place if it is a weighted cycle. As a direct
consequence, it can be stated that a weighted T-system is observable for any
initial marking iff all synchronization places are measured, or, in the case of a
cycle, one arbitrary place is measured [48]. For this kind of nets, the rates of
the transitions do not have any influence on the observability of the system.
Attributions on the other hand, force to study the rates of the net. Observe for
example the net in Fig. 7(a), and assume that p3 is measured. The system is
observable iff the rates of t1 and t2 are not equal, i.e. λ[t1] 6= λ[t2]. Intuitively,
if they have the same rate, it is not possible to distinguish which part of the
flow is coming from each place [47]. Moreover, this is not a local problem, but
a global one. On the one hand, it is not just the rates of the input transitions
of the attribution that have to be taken into account. For example, the net in
Fig. 7(b) is not observable if λ[t2] = λ[t3], but neither is if λ[t4] = 2·λ[t2]·λ[t3]

λ[t2]+λ[t3]
.

On the other hand, attributions are not “independent”. For example, the net in
Fig. 7(c) with λ[t2] 6= λ[t3] and λ[t4] = λ[t5] = 2·λ[t2]·λ[t3]

λ[t2]+λ[t3]
is observable if p4 is



measured, but not if p5 is measured. For any other value of λ[t4] = λ[t5] it is
observable measuring either p4 or p5. A related “design” problem is to determine

p3

p2
p1

t1
t2

t3

2

(a) (b) (c)

Fig. 7. Observability in nets with attributions depends on both the rates, and the
structure

minimal cost observability. That is, when a cost is assigned to measuring each
place, which is the best selection of the places guaranteeing that the system is
observable? To apply the previous result would mean to solve a combinatorial
set of observability problems. Nevertheless this number can be greatly reduced
in many cases applying the following property [48]: Let p and p′ be such that
there is a path from p′ to p without synchronizations or attributions. Then

– p′ can be deduced from the observation of p.
– If the net is not observable measuring a set of places containing place p, it

cannot be observable if p is replaced by p′.

An algorithm, and its application to an example showing how the combinatory
is reduced can be found in [48].

7 Dynamic Control: on “forced” continuous net systems

In order to speak about dynamic control, some previous questions should be
answered. For example, what to control? According to the adopted time inter-
pretation, flows through transitions should be controlled, both w.r.t. routing and
service. Observe that this is not really something new; the same strategy is used
for QN, were servers activity and routing of customers are controlled; analo-
gously, when dealing with Forrester Diagrams, the opening of valves has to be
controlled. Now the second question, how to control? The only idea is to control



at routing points (what may be complex at non free-choices) and, eventually, to
slow down the activity of transitions (servers in a station). As a last question,
it should be decided how to express the control. Two main approaches can be
considered: multiplicative (the speed of t is controlled as α ·λ[t], with α ∈ (0, 1))
or additive (subtracting u, 0 ≤ u ≤ f). In any case, the flow can go from f [t]
to 0. That is, the control can locally slow down the activity of transitions. It
is not the moment to discuss that issue in detail, let us just say that they are
“in essence” equivalent. Our choice here is to use the additive formulation. Pro-
ceeding in that way, using u as the slow down control vector, the fundamental
equation is now: ṁ = C · (f(m)− u), were 0 ≤ u ≤ f(m).

The above statement suggests two different remarks: (1) the system is not
positive anymore in the classical (and restrictive) sense of [35, 37] (see [36]);
(2) the slowing down action is dynamically bounded by the actual state (marking)
of the system.

Some results are already known for controllability in the previous frame-
work [49]. For the present purpose let us just point out that if all transitions
are controllable, reachability in timed models is equivalent to reachability in the
underlying untimed models [50]. In other words, if marking m is reachable in
the untimed model 〈N ,m0〉, there exists a way of controlling the transitions for
reaching it in the controlled timed model.

Notice that it will take infinite time to reach a marking that empties a place,
unless perhaps if it were already empty in the initial marking. However, that kind
of markings will always have at least one transition with 0 throughput, hence
they are not very interesting as steady state markings. Once again, this problem
is not something new: the loading of a capacity in a basic RC-electrical circuit
cannot be “complete” in finite time. Nevertheless, engineers use the classical
concept of response time (at 5%, 3%, 1%) in order to have a practical view of
the duration of the transient behaviour.

Let us assume in the sequel that all the transitions are controllable, and let
us concentrate first in the steady state control. A first remark is that given a
net and a constant steady state control, u, there may exist several markings,
perhaps with different flows, that may be steady state markings. For example,
for the system depicted in Fig. 6, with λ = [2, 1, 1], and u = 0, marking [5, 1, 1, 1]
(with flow [1, 1, 1]) and marking [5/3, 11/3, 5/3, 5/3], (with flow [5/3, 5/3, 5/3])
can be both steady states. Hence, a first interesting step is to obtain the optimum
steady state, and a control action for it. A LPP similar to the one in (9) can be
used for that [50]:

max{ g · φ−w · µ− b · µ0

s.t. µ = µ0 + C · σ
φ[t] = λ[t] · µ[p]

Pre[p, t]
− v[p, t] ∀p ∈ •t

C · φ = 0
µ, σ ≥ 0
v ≥ 0}

(10)



The only difference is that now a set of slack variables v[p, t] have been
added in the equation that relates the marking with the flow. If |•t| = 1, the
slack variable v[•t, t] represents the control action of the transition. In general,
it can be seen that u[t] = minp∈•t v[p, t] is an appropriate control input.

With respect to the transient, the use of u as the single reference input is
not enough in general to reach the optimal flow in the net. In [11, 50] a schema
as the one in Fig. 8 is proposed, in which the control action depends on the
steady state control action, and the difference between the actual marking and
the steady state one.

LPP

u

 − 

m

K
+ u

PN

+
+

d

md

Fig. 8. Control schema

One approach that has been used in the literature to face the problem of op-
timal control of hybrid systems is to approximate them by discrete-time systems,
and represent them as Mixed Logical Dynamical (MLD) systems [51]. Usually,
in a MLD system the time step is constant. Time discretization has two im-
portant drawbacks: (1) The length of the sampling period is not easy to define.
There exists a tradeoff between accuracy (short sampling period) and compu-
tational speed (long sampling period). In fact, the complexity typically grows
exponentially with the number of switching variables, and these, for a given time
interval, are inversely proportional to the length of the sampling period; (2) It
is assumed that events can occur only at time instants that are multiple of the
sampling period. In fact, it would be desirable to deal with a model that requires
a minimum number of steps (samples) without losing accuracy.

In [52] it was seen that the behaviour of finite server semantics continuous
PN system could be described by means of an MLD system. Moreover, since
PN are event-driven systems, it could be a continuous-time event-driven MLD,
instead of one that evolves with a fixed time step. Observe that this approach
has two interesting advantages: (1) Event-discretization does not imply loss of
accuracy: The marking evolution of a continuous PN is linear between events,
and so it can be determined from the marking of the net at the event instants.
(2) The number of steps is minimized: A step happens only when it is really
required (an event happens).

Different kinds of optimal control problems can be solved by means of the
explained event-driven approach, for example: reaching a target marking in min-
imum time, i.e., time optimal control, maximizing the steady state throughput,
or maximizing an optimization function in which several different parameters
are involved [52].



Some preliminary efforts are also being made to transform the optimal control
problem into a multi-parametric quadratic program, and apply the techniques
developed for this kind of systems [19].
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search line: E. Teruel, J. Júlvez, E. Jiménez, C. Mahulea and D. Rodŕıguez.
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52. Júlvez, J., Bemporad, A., Recalde, L., Silva, M.: Event-driven optimal control of
continuous Petri nets. In: 43rd IEEE Conference on Decision and Control (CDC
2004), Paradise Island, Bahamas (2004)

53. Balbo, G., Silva, M., eds.: Proc. of Human Capital and Mobility MATCH—
Performance Advanced School. In Balbo, G., Silva, M., eds.: Performance Models
for Discrete Event Systems with Synchronozations: Formalisms and Analysis Tech-
niques, Jaca, Spain (1998)


