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Robust Control

uncertainties
structured (parameter variations)

unstructured (often in high frequencies)

Performance may be limited (for large plant uncertainties)

Adaptive Control

-Well suited for handling parameter variations
- Should work correctly in the presence of « unstructured
uncertainties » (parasitics)

- Problems for large and abrupt changes in plant parameters
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Robust Control plays an important role in Adaptive Control
(directly or indirectly)

Adaptive Control can improve the performances of a
Robust Controller

Identification in Closed Loop allows to establish links
between Robust Control and Adaptive Control
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Outline

- Introduction

- Identification in closed loop

- Experimental results (flexible transmission)

- Adaptive control strategies

- Robust control design for adaptive control

- Parameter estimators

- Adaptive control with multiple models

- Experimental results (flexible transmission)

- Adaptive rejection of unknown disturbances

- Experimental results (active suspension)

- Concluding remarks
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Plant Identification in Closed Loop

There are systems where open loop operation
is not suitable  ( instability, drift, .. )

A controller may already exist ( ex . : PID )

Iterative identification and controller redesign

Re-tuning of the controller
a) to improve achieved performances
b) controller maintenance

Why ?

Cannot be dissociated from the
controller and robustness issues

May provide better « design » models ! !
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Identification in Closed Loop

The flexible transmission
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What is the good model ?

« closed loop identified » model
« open loop identified » model

fs = 20Hz 0% load
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output

control

real system

controller design using the
open loop identified model

output

control

real system

computed pole
cl. loop syst. pole

Benefits of identification in closed loop (1)

The pattern of identified closed loop poles is different from
the pattern of computed closed loop poles
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real system

output

control

controller computed using the
closed loop identified model

output

control

real system

computed pole
cl. loop syst. pole

Benefits of identification in closed loop (2)

The computed and the identified closed loop poles are very close 
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Modulus Margin:

Delay Margin:

Typical values:

The inverse is not necessarily true!

Critical frequency region for control
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Identification in Closed Loop

Open loop
interpetation

- take advantage of the « improved » input spectrum
- are insensitive to noise in closed loop operation

Objective : development of algorithms which:
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CLOE Algorithms

Objective of the Identification in Closed Loop

(identification for control)

Find the « plant model » which minimizes the discrepancy
between the « real » closed loop system and the « simulated »
closed loop system.
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Controller Model
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+
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+
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Parametric
Adaptation
Algorithm

Simulated System

Closed Loop Output Error
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Closed Loop Output Error Identification Algorithms
(CLOE)
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û
ŷ
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Same algorithm but different properties of the estimated model
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Iterative Identification in Closed Loop
 and Controller Re-Design

Repeat 1, 2, 1, 2, 1, 2,…
εCL

εCL

Step 1 : Identification in Closed Loop
-Keep controller constant
-Identify a new model such that

Step 2 : Controller Re – Design
- Compute a new controller such that
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Adaptive Control – Basic Schemes

- Indirect adaptive control
- Direct adaptive control (the controller is directly estimated)

Performance
specifications

Adjustable
Controller Plant+

-

Controller
Design

Plant 
Model

Estimation

Adaptation loop

Adjustable
Controller Plant+

-

Performance
specifications

Controller
Estimation

Adaptation loop

Indirect Adaptive Control Direct Adaptive Control
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time

Parameter Estimation
+

Controller Computation
t t+1

time

Fixed (or time varying)
Controller computed at( t)

+
Parameter Estimation

t t+N

Controller
computed
at (t +N)

Iterative Identification and Controller Redesign versus 
(Indirect) Adaptive Control

N = 1 : Adaptive Control

The iterative procedure   introduces a time scale 
separation between identification / control design

N = Small
Adaptive Control
N = Large
Iterative Identification in C.L.
And Controller Re-design

Plant Identification in C.L. +
Controller Re-design

∞⇒N
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The flexible transmission
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Adaptive Control of a Flexible Transmission
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Adaptive Control of a Flexible Transmission

Frequency characteristics for various load

Rem.: the main vibration mode varies by 100%
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Robust Control Design for Adaptive Control

parameter variations
(low frequency) Adaptation Robust Design

unstructured
uncertainities
(high frequency)

Basic rule : The input sensitivity function (Sup) should be small in
medium and high frequencies

Pole Placement :
- Opening the loop in high frequncies (at 0.5fs)
- Placing auxiliary closed loop poles near the high frequency poles
of the plant model

Generalized Predictive Control :
- Appropriate weighting filter on the control term in the criterion

How to achieve this ?
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Robust Control Design for Adaptive Control
(Flexible Transmission)

a) Standard pole placement (1 pair dominant poles + h.f. aperiodic poles)
b) Opening the loop at 0.5fs (HR = 1 + q-1)
c) Auxiliary closed loop poles near high frequency plant poles
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Parameter Estimators for Adaptive Control
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Classical Indirect Adaptive Control
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(design)

- Uses R.L.S. type estimator (equation error)
- Sensitive to output disturbances
- Requires « adaptation freezing » in the absence of persistent excitation
- The threshhold for « adaptation freezing » is problem dependent
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Closed Loop Output Error Parameter Estimator
for Adaptive Control
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persistent excitation

- CLOE requires stability of the closed loop
- Well suited for « adaptive control with multiple models »
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Adaptive Control – Effect of Disturbances

Classical parameter estimator
(filtered RLS) CLOE parameter estimator

Disturbances destabilize the adaptive system when using RLS parameter estimator
(in the absence of a variable reference signal)
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Adaptive Control with Multiple Models
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Supervisory Control
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Rem. : stability requires the use of hysteresis or time delay in switching
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Adaptive Control with Multiple Models

n is small (for the flexible transmission n = 3)
Multiple models : improvement of the adaptation transients
CLOE Estimator : reduction of the false swithchings, performance improvement
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Adaptive Control versus Robust Control

Load variations : 0% 100% (in several steps)
Rem : The robust controller used is the winner of  an international

benchmark test for robust control of the flexible transmission 
(EJC, no.2., 1995)
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Adaptation Transients

Adaptive Control with Multiple Models Classical Adaptive Control (simulation)

0 = adaptive ; 1= 0% ; 2 = 50% ; 3 = 100%

Load variations : 100% 0% (in two steps at 19s and 29s)



I.D.Landau : From Robust Control to Adaptive Control
33

Adaptive Control with Multiple Models

The « plant models » are not in the « model set »

0 = adaptive ; 1= 0% ; 2 = 50% ; 3 = 100%

Load variations : 75% 25%
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Adaptive rejection of unknown disturbances
Application to active suspension
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Rejection of unknown disturbancesRejection of unknown disturbances

• Problem: Attenuation of unknown and/or variable stationary disturbances
without using an additional measurement

• Solution: Direct adaptive feedback control
• Methodology: Based on the

• Internal model principle
• Sensitivity function
• Q - parametrization
• Direct adaptive control algorithm

• Objective: Computation of a controller with an adaptive internal model of the
disturbance

Rem: Stationary disturbances models have poles on the unit circle

Hypothesis: Plant model parameters are constant and known
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Central contr: [R0(q-1),S0(q-1)].

Bezout:        P(q-1)=A(q-1)S0(q-1)+q-dB(q-1)R0(q-1).

Control:       S0(q-1) u(t) = -R0 (q-1) y(t)

Q-parameterization :
R(z1)=R0(q-1)+A(q-1)Q(q-1);
S(q-1)=S0(z-1)-q-dB(q-1)Q(q-1).
Q(q-1) computed such as [R(q-1),S(q-1)] 

contain the internal model of the disturb.

Direct adaptative control (Direct adaptative control (QQ--parameterizationparameterization))

p
d MDBQqS =− −

0

Control:  S0(q-1) u(t) = -R0 (q-1) y(t) - Q (q-1) w(t),

where w(t) = A (q-1) y(t) - q-dB (q-1) u(t).

CL poles: P(q-1)=A(q-1)S0(q-1)+q-dB(q-1)R0(q-1).

The internal model
can be tuned with Q
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Goal: minimize y(t) (according to a certain criterion).
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Plant

ModelModel

^
Adaptation
algorithm

Direct adaptive rejection of unknown disturbances

• The order of the Q polynomial depends upon the order of the disturbance model
denominator (DP) and not upon the complexity of the plant model

• Less parameters to estimate than for the identification of the disturbance model
• Much simpler than “indirect adaptive control”
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The Active Suspension

Residual
force

(acceleration)
measurement

Active
suspension

Primary force
(acceleration)
(the shaker)
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The Active Suspension SystemThe Active Suspension System

controller
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Two paths :
•Primary
•Secondary (double 
differentiator)
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Active Suspension

Primary path

Frequency Characteristics of the Identified Models
Secondary path

0;16;14 === dnn BA
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Adaptive disturbance rejection

Closed
loop

Open 
loop

Disturbance : Chirp

Initialization of the
adaptive controller

25 Hz
47 Hz
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Concluding Remarks

- Identification in closed loop establishes a bridge between
robustness and adaptation

- Iterative identification in closed loop and controller re-design
is a two times scales adaptive control

- Robust linear design in high frequency is needed for adaptive
control schemes

- The « multiple models » approach to adaptive control improves
significantly the adaptation transients

- Robust control gives hints for adaptive rejection of unknown
disturbances

- High speed simple adaptive direct control scheme for rejection
of unknown disturbances has been proposed and tested.
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web site :

Commande des systèmes
conception,identification et mise en oeuvre

http://www-lag.ensieg.inpg.fr/landau/bookIC


