Mensaje de error

The comment you are replying to does not exist.

Seminario. "Residual properties of groups in the continuous Weihrauch lattice"

Durante está semana nos visitan los investigadores Manlio Valenti, Cecilia Pradic y Ben Koch, de la universidad de Swansea (Reino Unido). El seminario de Teoría de la Computación de Swansea tendrá como ponente a Emmanuel Rauzy de la University of Creteil y se transmitirá por Zoom en el seminario del Diis hoy jueves a las 14:00 hora española.

 

Resumen:

For every class C of groups, one can define a sort of projection onto C: indeed, every group has a greatest residually C quotient, where a group is residually C if every non-identity element in this group has a non-identity image via a morphism to a group in C.

 

Rauzy studies how discontinuous this projection map is, in terms of continuous Weihrauch reducibility over the topology of the space of marked groups. This provides a useful complement to the Borel Classification of C: indeed, the complexity of studying homomorphisms towards groups of C is much better captured by this classification than by the usual Borel classification of C.

I will introduce the main notions that are relevant in this context: quasi-varieties, equational noetherianity, INIP groups.

 

 

Enlaces:

https://www.lacl.fr/emmanuel.rauzy/

https://www.swansea.ac.uk/compsci/research-and-impact/theoretical-computer-science/

https://swansea-theory.blogspot.com/

https://swanseauniversity.zoom.us/j/95746267152?pwd=1m9uQnef2tguCknQPWonabw32cLot5.1